
Team 511: Intrepid

Juan Tapia John Karamitsanis Cory Stanley Erika Craft

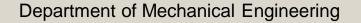
Intrepid - Redesigned Hardtop Team 511

<u>Materials Engineer</u> Juan Tapia <u>Lead Engineer</u> John Karamitsanis Mechanical Design Engineer Cory Stanley

Marine Design Engineer Erika Craft

Erika Craft

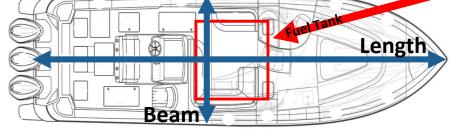
Department of Mechanical Engineering

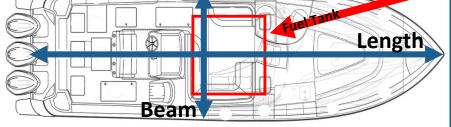

Sponsors, Advisor, & Coordinator

<u>President</u> Ken Clinton V.P. of Engineering Richard Ahl <u>Academic Advisor</u> Dr. William Oates Senior Design Coordinator Dr. Shayne McConomy

Erika Craft

To improve the on-water performance of the Intrepid 409 Valor by manipulating hardtop parameters.


Erika Craft


To improve the on-water performance of the Intrepid 409 Valor by manipulating hardtop parameters

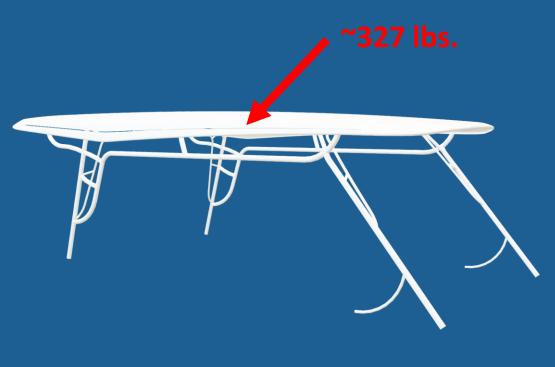
Intrepid 409 Valor	
Length:	40' 0"
Beam:	11′ 1″
Fuel Capacity:	438 Gallons
Top Speed:	70+ mph
Range:	

To improve the on-water performance of the Intrepid 409 Valor by manipulating hardtop parameters


Erika Craft

Intrepid wants to improve vessel performance

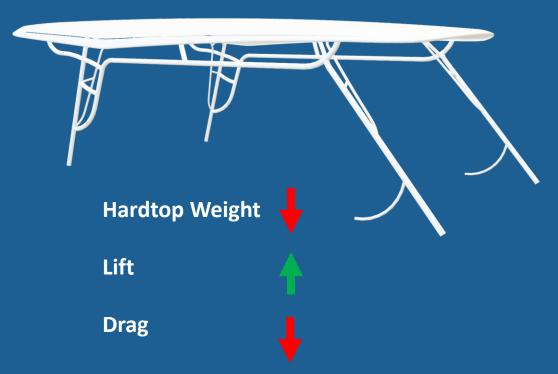
The current hardtop is heavier than desired


Improving the hardtop can solve Intrepid's problem of improving performance

Intrepid wants to improve vessel performance

The current hardtop is heavier than desired

Improving the hardtop can solve Intrepid's problem of improving performance



Intrepid wants to improve vessel performance

The current hardtop is heavier than desired

Improving the hardtop can solve Intrepid's problem of improving performance

Improve boat on water performance

Improve fuel efficiency

Analyze and enhance aerodynamics

Keep the design manufacturable

Erika Craft

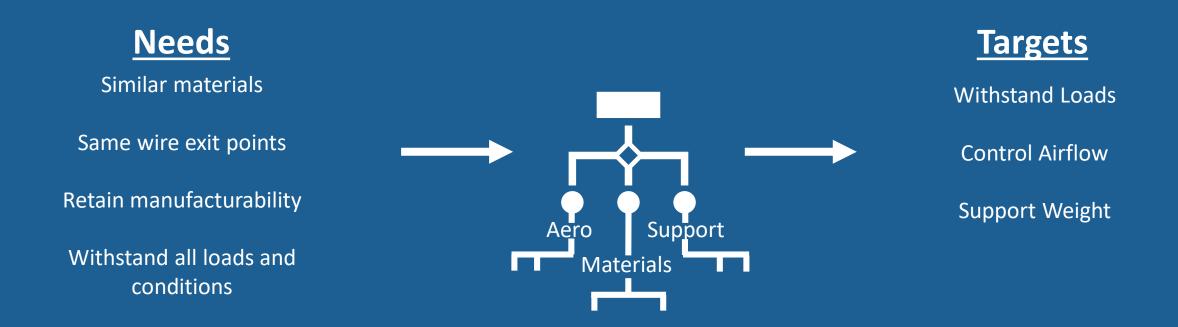
<u>۸</u> Weight

25% Weight Reduction

50% Weight Reduction

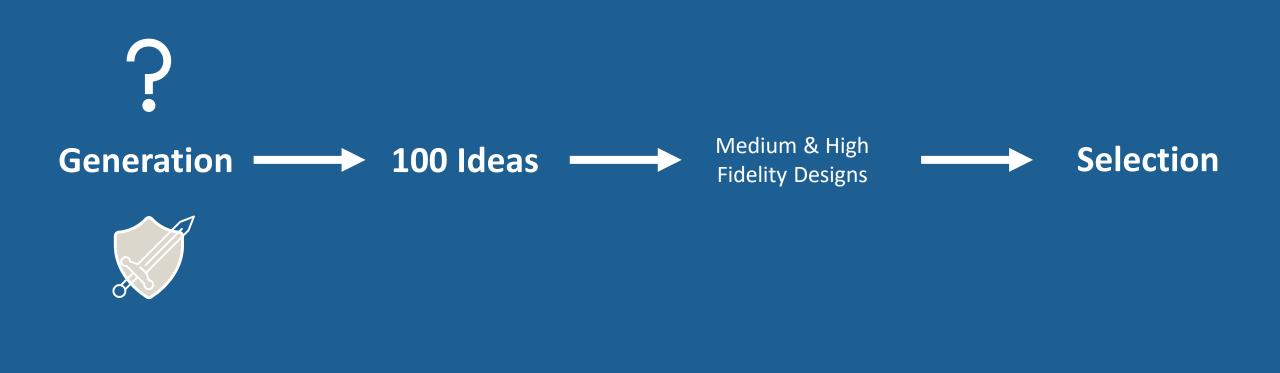
Key Goals

Cost Increase


25% Cost Increase

Erika Craft

11



Erika Craft

12

Concept Generation

Erika Craft

Concept Selection

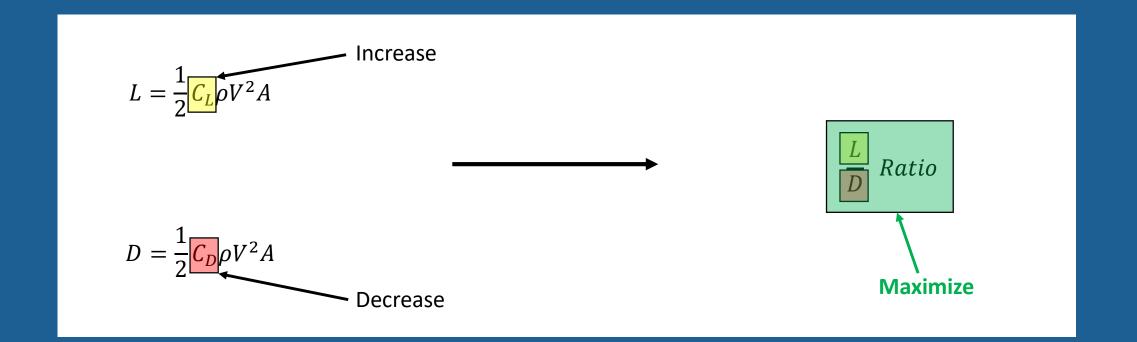
Selection Process

- 1. House of Quality
- 2. Pugh Chart Iterations
- 3. Analytical Hierarchy Process

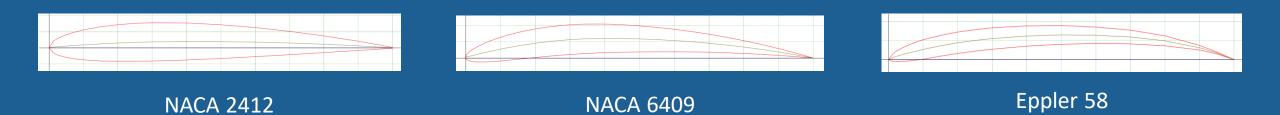
Concepts Selected

Material Changes in Hardtop

Geometry Changes in Hardtop


Material & Geometry Changes

Erika Craft

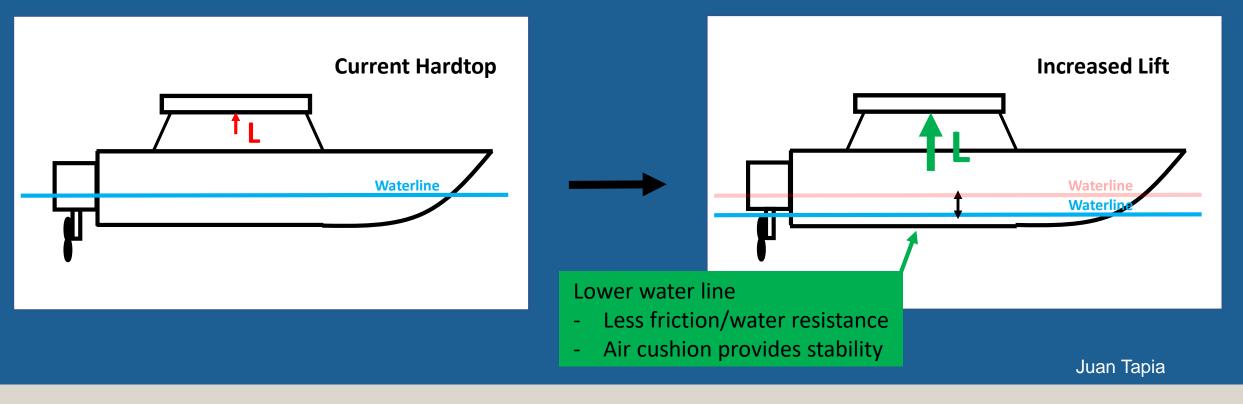

Aerodynamic Calculations

Erika Craft

Aerodynamic Calculations

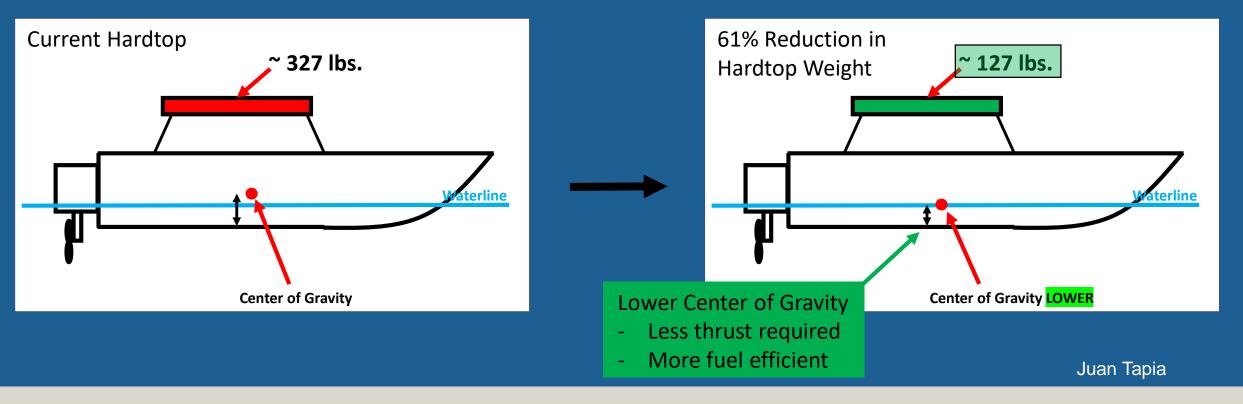
Airfoil geometry gives insight as to how hardtop can be manipulated

Erika Craft



Improve boat on water performance

Increasing stability at higher speeds can help achieve this goal



Improve fuel efficiency

Reducing hardtop weight reduces thrust required to travel a certain speed

Changes can be made to the current lamination schedule for light-weighting

Current Lamination Schedule Gelcoat 1 oz CSM 1208 ³⁄₄" core 1" core 1208 1 oz CSM

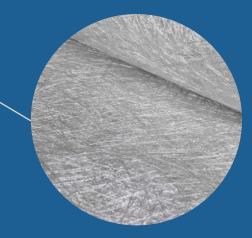
Juan Tapia

Changes can be made to the current lamination schedule for light-weighting

Current Lamination Schedule

1 oz CSM 1208 ³⁄4" core 1" core 1208 1 oz CSM

Juan Tapia


Changes can be made to the current lamination schedule for light-weighting

Current Lamination Schedule

Gelcoat

1 oz CSM 1208 3⁄4" core 1" core 1208 1 oz CSM

Juan Tapia

Changes can be made to the current lamination schedule for light-weighting

Current Lamination Schedule Gelcoat 1 oz CSM 1208 • 3⁄4" core 1208 1 oz CSM

Juan Tapia

Changes can be made to the current lamination schedule for light-weighting

Current Lamination Schedule Gelcoat 1 oz CSM 1208 3⁄4" core 1" core 1208 1 oz CSM

Juan Tapia

Changes can be made to the current lamination schedule for light-weighting

Current Lamination Schedule Gelcoat 1 oz CSM 1208 3⁄4" core 1" core 1208 1 oz CSM

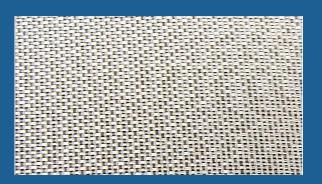
Juan Tapia

Changes can be made to the current lamination schedule for light-weighting

Juan Tapia

Changes can be made to the current lamination schedule for light-weighting

Current Lamination Schedule Gelcoat 1 oz CSM 1208 34" core 1208 1 oz CSM


Juan Tapia

Fiberglass Change

Changes can be made to the current lamination schedule for light-weighting

S-2 Fiberglass

- Low Density
- Low Resin Absorption
- Very Thin Fiberglass Sheets
- Excellent Strength to Weight Ratio

Juan Tapia

Fiberglass Change

Changes can be made to the current lamination schedule for light-weighting

1208 Fiberglass

→ S-2 Fiberglass

18.3% Weight Reduction from Fiberglass Change

3.85% Cost <u>Increase</u> from Fiberglass Change

59.9 lbs. saved!

Juan Tapia

28

Foam Core Change

Changes can be made to the current lamination schedule for light-weighting

Divinycell H-35

- Low Density
- High Stiffness to Weight Ratio
- Low Water Absorption
- Low Resin Absorption
- Excellent Strength to Weight Ratio
- Lightweight Foam Core Used for Marine Applications

Juan Tapia

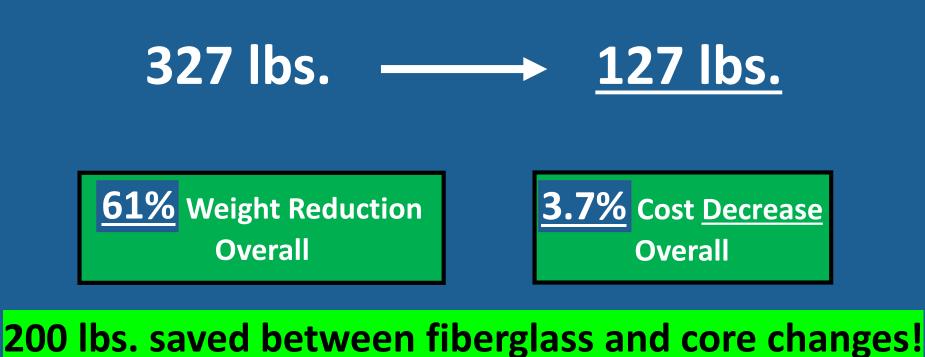
Foam Core Change

Changes can be made to the current lamination schedule for light-weighting

42.7% Weight Reduction from Foam Core Change

7.70% Cost <u>Decrease</u> from Foam Core Change

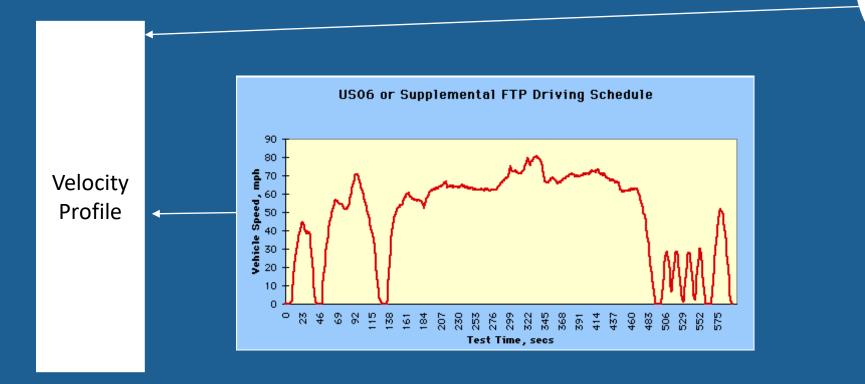
140 lbs. saved!


Juan Tapia

30

Total Weight Reduction

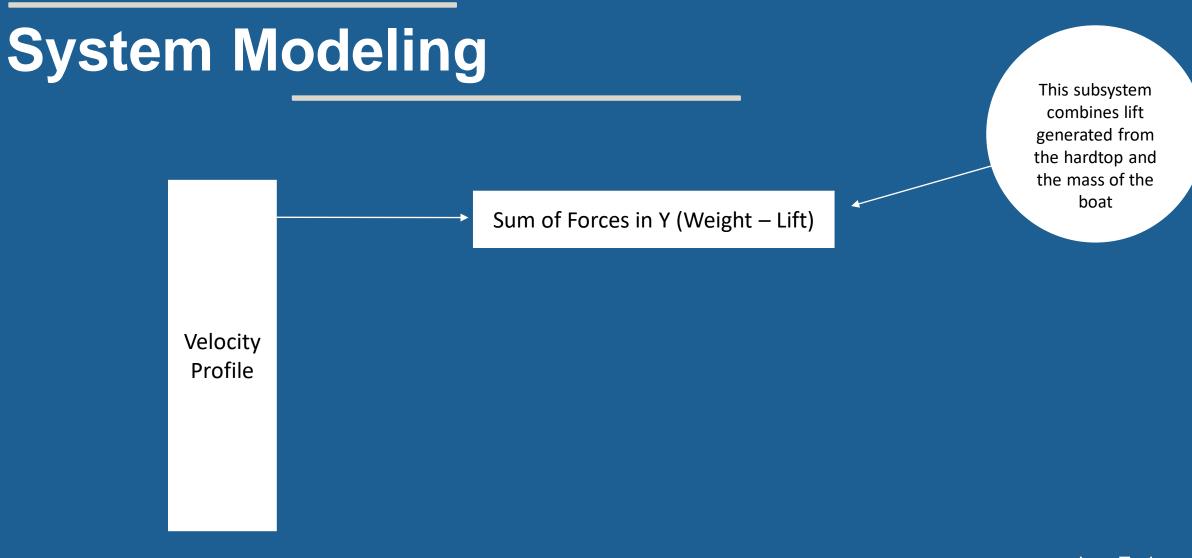
Changes can be made to the current lamination schedule for light-weighting


1% decrease in overall vessel weight

Juan Tapia

31

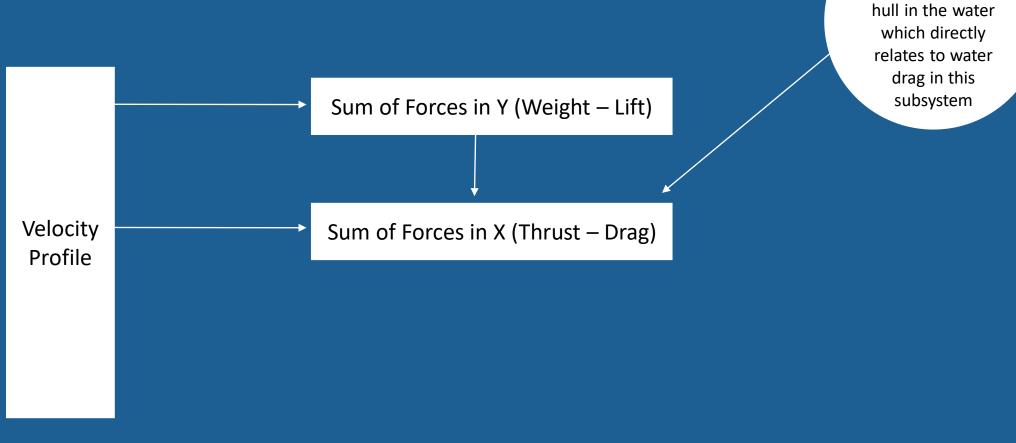
System Modeling - Simulink



Velocity profile taken from the EPA Dynamometer Drive Schedules and scaled to suit our system

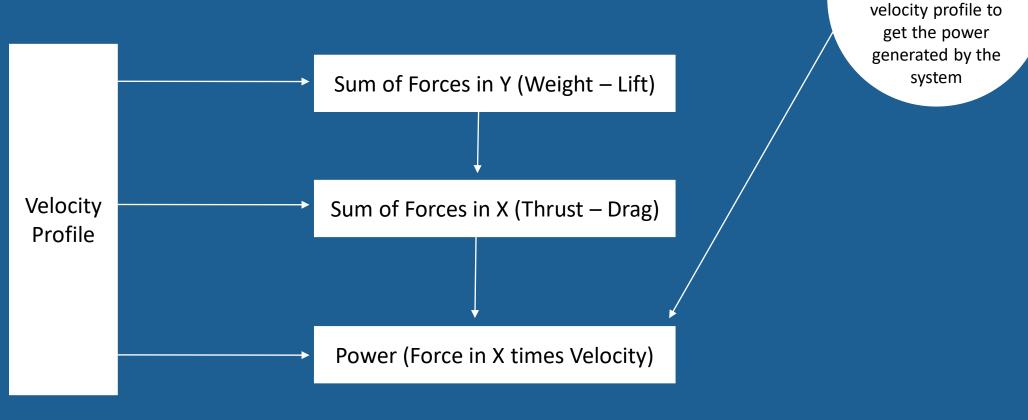
Juan Tapia

32



Juan Tapia

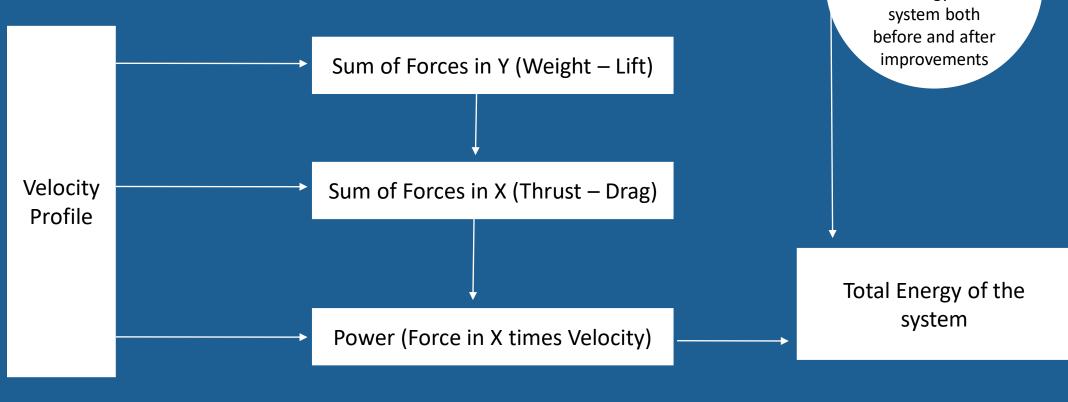
System Modeling


Department of Mechanical Engineering

Juan Tapia

The sum of forces in Y give area of

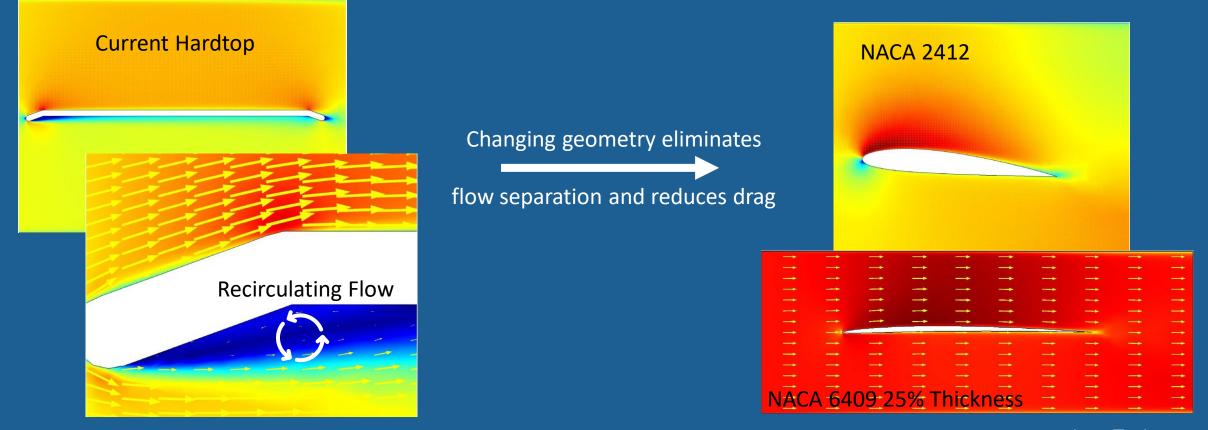
System Modeling



Juan Tapia

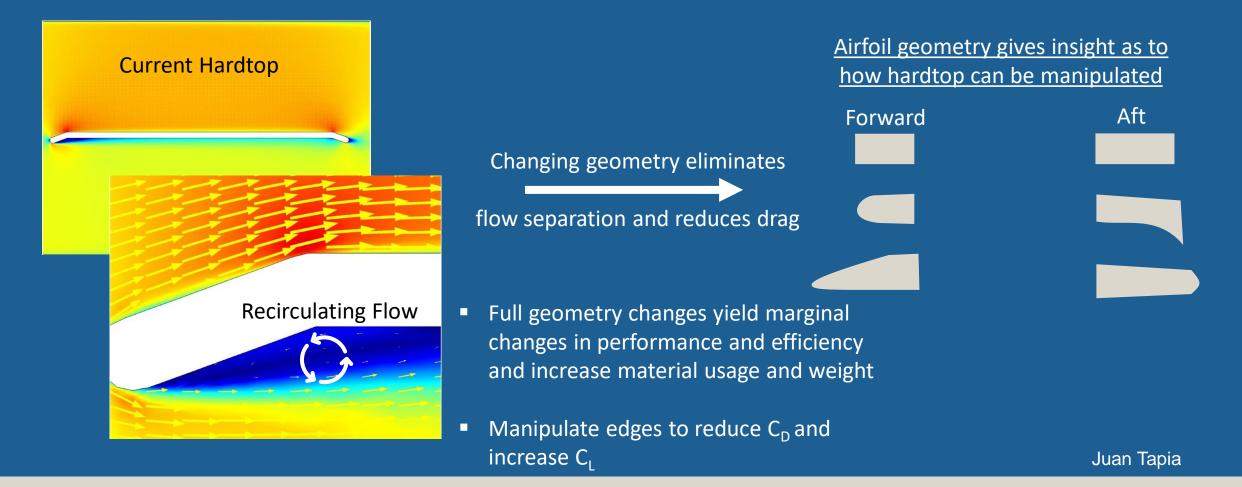
The forces in the X direction are multiplied by the

System Modeling


Juan Tapia

Taking the integration of the power, we find the energy of the

Department of Mechanical Engineering


System Modeling - COMSOL

Juan Tapia

Future Work- Recommendations

Future Work- Recommendations

- Recommend shape changes to forward and aft edges
 - Small changes in edge geometry
 - Reduce C_D and Increase C_L

Juan Tapia

Department of Mechanical Engineering

Erika Craft, Undergraduate Student, Materials Track

P: 561-227-9849 E: <u>epc16@my.fsu.edu</u>

Department of Mechanical Engineering

College of Engineering Cory Stanley, Undergraduate Student, Aeronautics Track

P: 850-566-4472 E: cps18u@my.fsu.edu FAMU-FSU College of Engineering

Department of Mechanical Engineering

John Karamitsanis, Undergraduate Student, Thermal Fluids Track

P: 813-992-0152

E: jhk16c@my.fsu.edu

Engineering

Department of Mechanical Engineering

Juan Diego Tapia, Undergraduate Student, Materials Track

P: 850-273-3139

E: jdt16b@my.fsu.edu

Backup Slides

Department of Mechanical Engineering

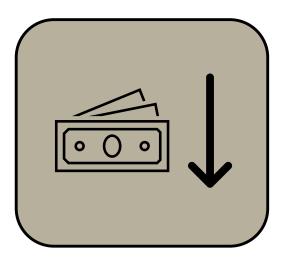
References

409 Valor. (n.d.). Retrieved October 15, 2020, from <u>https://www.intrepidpowerboats.com/boats/409-valor/</u>

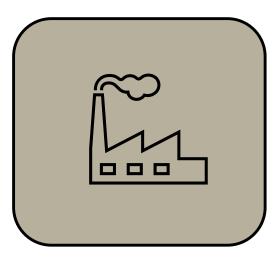
McConomy, S. (2020, October 6). Retrieved October 15, 2020, from <u>https://famu-fsu-eng.instructure.com/courses/4476/discussion_topics/18526</u>

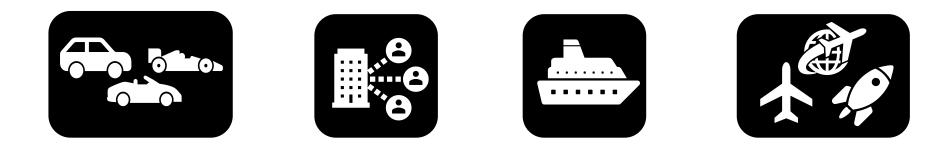
Tweedie, Dingo (2021, January 15). Retrieved from Savitsky Power Prediction | Page 6 | Boat Design Net

Knit, 1208 Biax (fiberglassflorida.com)


Chopped Strand Mat (fibreglast.com)

Gelcoat Product – Grainger Industrial Supply (grainger.com)

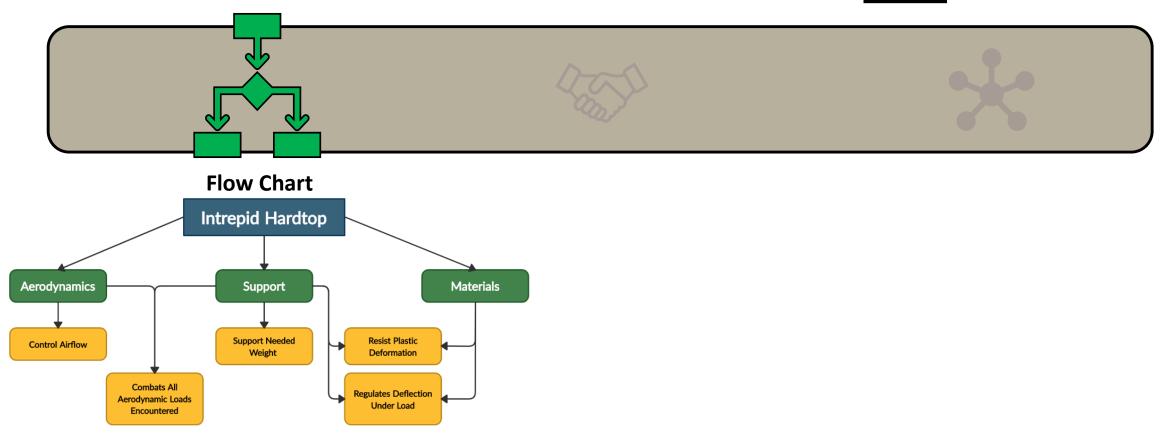

Foam Core Board, Uline Board (uline.com)


- The changes to the hardtop will still use current mounting points.
- Our changes will only be applied to the hardtop and no other parts of the vessel.
- We are assuming we will not be physically producing the hardtop

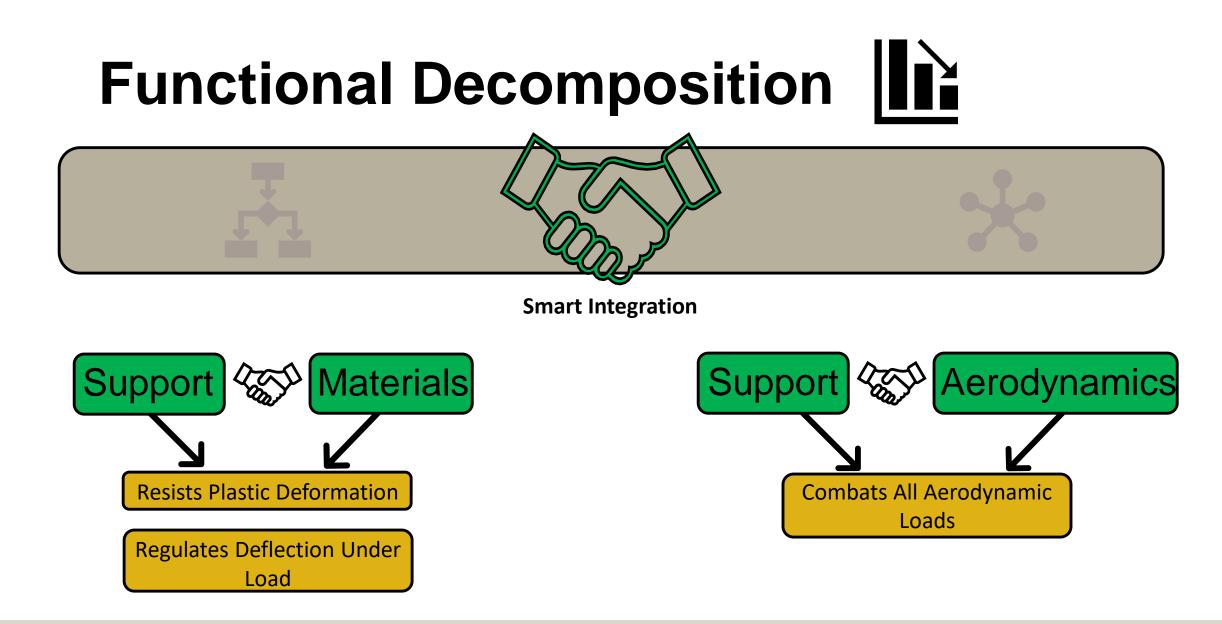
Customer Needs

Question What materials need to be considered? Parameters of the current hardtop? Can we alter wire/chase tube layout? Is there a certain weight the hardtop needs to withstand?

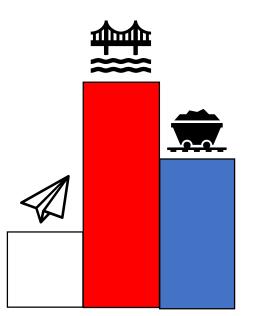
Incorporate materials used within Intrepid


Similar dimensions retained

Exit points must stay the same


Design withstands all nominal loads and running conditions

Functional Decomposition



Functional Decomposition

Connection to Systems

Highest number of functions Highest number of cross system functions

Most shared functions with support system

Least shared functions across systems

Changes can be made to the current lamination schedule for light-weighting

Changes can be made to the current lamination schedule for light-weighting

Density -> 66.6 $\frac{lbs}{ft^3}$

S-2 Fiberglass

Thickness -> 0.008 in.

Density -> 97.2 $\frac{lbs}{ft^3}$

Thickness -> 0.04 in.

Juan Tapia

50

Changes can be made to the current lamination schedule for light-weighting

Density -> 97.2 $\frac{lbs}{ft^3}$

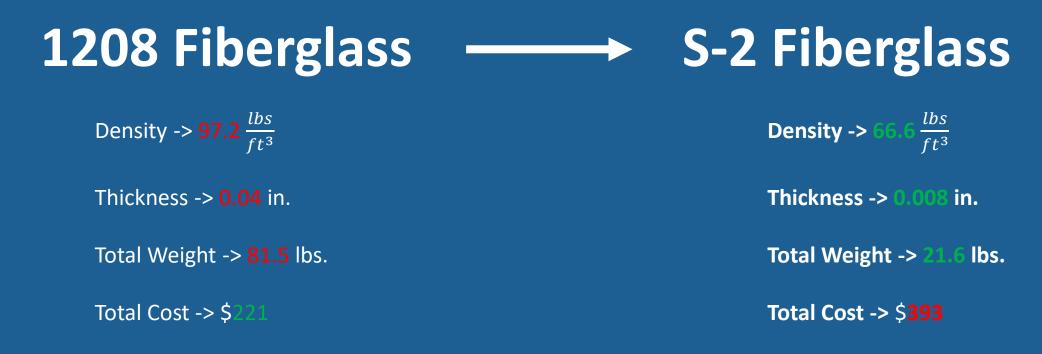
Thickness -> 0.04 in.

Total Weight -> 81.5 lbs.

S-2 Fiberglass

Density -> 66.6 $\frac{lbs}{ft^3}$

Thickness -> 0.008 in.


Total Weight -> 21.6 lbs.

Juan Tapia

51

Changes can be made to the current lamination schedule for light-weighting

Juan Tapia

52

Fiberglass Engineering Characteristics

1208 Fiberglass

Tensile Strength(ksi)-> 23.8

Compressive Strength(ksi)--> 33.2

Shear Stress(ksi)--> 18.4

Flex. Ult. Strength(ksi)--> 35.6

S-2 Fiberglass

Tensile Strength(ksi)-> 681.

Compressive Strength(ksi)-> 5800

Shear Stress(ksi)-> 507.0

Flex. Ult. Strength(ksi)-> 94

John Karamitsanis

53

Foam Core Change

Changes can be made to the current lamination schedule for light-weighting

 \rightarrow

Density -> 9.98 $\frac{lbs}{ft^3}$

Juan Tapia

54

Foam Core Change

Changes can be made to the current lamination schedule for light-weighting

Divinycell H-35

Total Weight -> 183 lbs.

Density -> 2.40 $\frac{lbs}{ft^3}$

Total Weight -> 45.2 lbs.

John Karamitsanis

Foam Core Change

Changes can be made to the current lamination schedule for light-weighting

Density -> 9.98 $\frac{lbs}{ft^3}$

Total Weight -> 183 lbs.

Total Cost -> \$1154.96

Divinycell H-35 $40 \frac{lbs}{ft^3}$

Density -> 2

Total Weight -> 4 lbs.

Total Cost -> \$825.64

Juan Tapia

56

Core Engineering Characteristics

Aircell T-100 Core

Tensile Strength(ksi)-> 1017

Compressive Strength(ksi)--> 1017

Shear Stress(ksi)--> 9

Flex. Ult. Strength(ksi)--> 966.2

Divinycell H-35

Tensile Strength(ksi)-> 1017

Compressive Strength(ksi)-> 1017

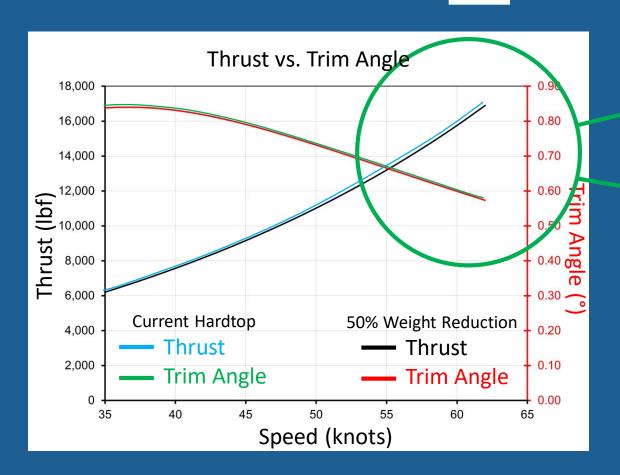
Shear Stress(ksi)-> 600

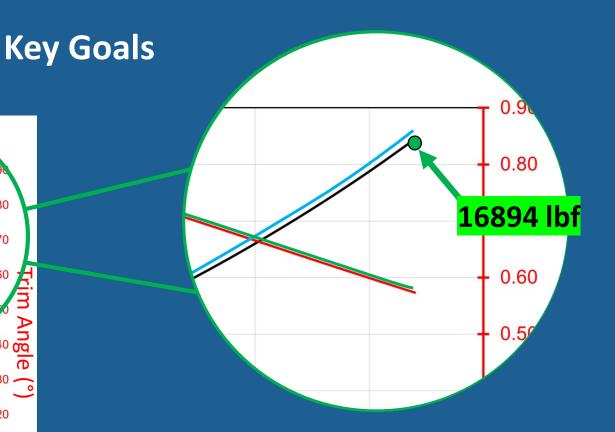
Flex. Ult. Strength(ksi)-> 966.2

John Karamitsanis

57

Aerodynamic Calculations


	A	В	С	D	E	F	G	Н		J	К	L
1										cL	@ 0 deg	@ 5 deg
2	LIFT		Flat Plate	2412	NACA 6409	EPPLER 58				Flat Plate	0	0.7
3	0 deg	35	0	408 N	1135 N	1536 N				NACA 2412	0.2442	0.8089
4	0 deg	70	0	1632 N	4540 N	6146 N				NACA 6409	0.679	1.1928
5	5 deg	35	1170 N	1352 N	1994 N	2239 N				EPPLER 58	0.9192	1.3395
6	5 deg	70	4680 N	5409 N	7975 N	8956 N						
7												
8	DRAG		Flat Plate	2412	NACA 6409	EPPLER 58						
9	0 deg	35	0	9.5 N	12 N	10 N						
10	0 deg	70	0	38 N	47 N	40 N		A = 11.148 m^2		cD	@ 0 deg	@ 5 deg
11	5 deg	35	84 N	13 N	13 N	24 N		V = 15.6464 m/s		Flat Plate	~0	0.05
12	5 deg	70	334 N	54 N	54 N	96 N		V = 31.2928 m/s		NACA 2412	0.00568	0.00804
13								rho = 1.225 kg/m^3		NACA 6409	0.007	0.0079
14	4 We are using L = (1/2)*(cL)*rho * V * V * A							rho is STP		EPPLER 58	0.0059	0.01428
15	We are usi	ng D = (1/2	2)*(cD)*rho	* V * V * A								


John Karamitsanis

Improve fuel efficiency

*** * ***

Thrust required is lower throughout powerband with lighter hardtop i.e. <u>Fuel is saved</u>

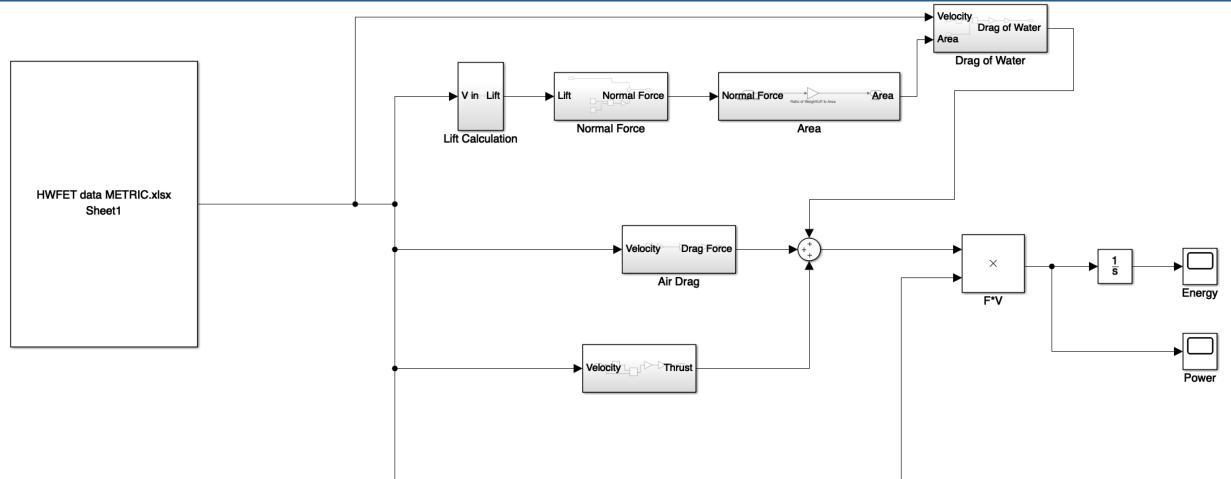
John Karamitsanis

Thrust Calculations – 4 ft CoG

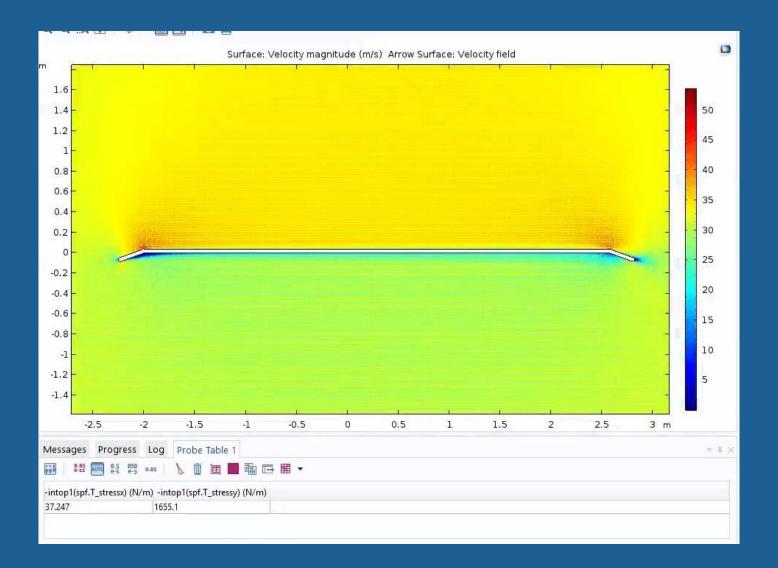
	-								
INPUT									adsheet was written by Dingo Tweedie, October 2004.
Hull	Length of Waterline	1.55	40.00	fe et	=	10 100	metres	Versie 1.2	blad werd deur Dingo Tweedie, oktober 2004, geschreven.
mull	Beam	L _{WL}	40.00		-		metres	versie 1.2	2.1
	VCG	VCG	4.00		_		metres		
	Displacement	A	20.000		=	9,072			
	Deadrise @ Transom	βτ	10.00			5,072	Ng		
	Deadrise @ Amidships		10.00						
	Distance to Amidships	P)0(L)0(20.000		=	6 006	metres		
	Distance to Amidships	L)0(0.000		-	0.030	metres		
	Angle of Thrust Line	8	0.00						
	r anglo of thirdot Eine	f	0.00		=	0.000	metres		
	Minimum Speed	Vmin	6.7	kn	= 1	11.3	feet/s	This is the	e minimum speed valid for this analysis
	Maximum Speed	Vmax	145.4	kn	=	245.5	feet/s		e maximum speed valid for this analysis
	Maximum Opeed	• max	140.4		1993	210.0	10000]	
S/Str.	Length Overall	LOA	40.00	feet	=	12,192	metres	1	
	Maximum Beam	B _{max}	11.08	feet	=	3.378	metres		
	Moulded Depth of Hull	Z	11.67	feet	=	3.556	metres		
	Height of House	Hss	0.00	feet	=	0.000	metres		
	Breadth of House	Bss	0.00	feet	=	0.000	metres		
	Frontal Area of House	Ass	0.00	feet ²	=	0.000	m ²		
Number	Number of Propellers	N	3	1					
				-					
Trim Tab	Chord	CF	1	feet	=	0.305	metres		
-	Span Ratio	σ	0.333	(<=	1)				
	Deflection Angle	δ	2	0	3.59				
Rudder	Chord	Crudder	0.00	feet	=	0.000	metres		
	Thickness	t	0.00	feet	=	0.000	metres		
	Area	Arudder	0.00	feet2	=	0.000	m ²		
	00 ac 900	x _o	0.00	feet f	rom tra	nsom =	0 000	metres	(+ve fwd)
	Centrepoint	y _o			rom ba			metres	(+ve up)
				5					
Shaft	Diameter of Shaft	Φ_{shaft}	0.00	feet	=	0.000	metres		
	Length of Shaft & Hub	1	0.00	feet	=	0.000	metres		
		(Xo	0.00	feet f	rom tra	nsom =	0.000	metres	(+ve fwd)
	Centrepoint	1 y.	0.00	feet f	rom ba	seline =	0.000	metres	(+ve up)
	L	()c	0.00	1			0.000		(

t	Chord Thickness	C _{strut}		feet = feet =		metres metres											
	and the second				20,545(5)	C		****									
	Area	A _{strut}		feet ² =	0.000												
	Centrepoint	Xc	0.00	feet from tr	ansom =	0.000	metres	(+ve fwd)									
	Centrepoint	y₀	0.00	feet from b	aseline =	0.000	metres	(+ve up)									
PUT		V	L	CG	τ	D)	1		Peff	ective		h	53	^r or	Comments	λ
192		[kn]	[ft]	[metres]	[°]	[lbf]	[kN]	[lbf]	[kN]	[ehp]	[ekW]	[ft]	[metres]	Lew.[°]	Angeli [°]		
		35	29	8.839	0.84	6,201	27.6	6,202	27.6	666	497	1.19	0.363	3.23	2.12	Note: not planing	5.66
	6-	36	29	8.839	0.84	6,459	28.7	6,459	28.7	714	533	1.19	0.363	3.08	2.04	Note: not planing	5.59
	Go	38	29	8.839	0.84	6,996	31.1	6,997	31.1	816	609	1.16	0.354	2.83	1.90	Note: not planing	5.47
		40	29	8.839	0.83	7,566	33.7	7,567	33.7	929	693	1.14	0.347	2.60	1.77	Note: not planing	5.37
		42	29	8.839	0.82	8,172	36.4	8,173	36.4	1,053	786	1.12	0.341	2.41	1.66	Note: not planing	5.29
		44	29	8.839	0.80	8,818	39.2	8,818	39.2	1,191	889	1.09	0.332	2.24	1.56	Note: not planing	5.23
		46	29	8.839	0.78	9,505	42.3	9,506	42.3	1,342	1,001	1.06	0.323	2.09	1.47	Note: not planing	5.19
		48	29	8.839	0.76	10,237	45.6	10,238	45.6	1,508	1,125	1.03	0.314	1.95	1.39	Note: not planing	5.16
		50	29	8.839	0.73	11,017	49.0	11,017	49.0	1,691	1,262	1.01	0.308	1.83	1.32	Note: not planing	5.15
		52	29	8.839	0.71	11,847	52.7	11,848	52.7	1,891	1,411	0.98	0.299	1.72	1.25	Note: not planing	5.15
		54	29	8.839	0.68	12,732	56.7	12,733	56.7	2,110	1,575	0.96	0.293	1.62	1.19	Note: not planing	5.16
		56	29	8.839	0.65	13,675	60.9	13,676	60.9	2,350	1,754	0.93	0.283	1.53	1.14	Note: not planing	5.19
		58	29	8.839	0.63	14,679	65.3	14,680	65.3	2,613	1,950	0.91	0.277	1.45	1.09	Note: not planing	5.23
		60	29	8.839	0.60	15,750	70.1	15,750	70.1	2,900	2,164	0.89	0.271	1.38	1.04	Note: not planing	5.27
		62	29	8.839	0.57	16,894	75.2	16,895	75.2	3,215	2,399	0.87	0.265	1.31	1.00	Note: not planing	5.339

Thrust Calculations – 4.25 ft CoG


INPUT									This enro	eadsheet was written by Dingo Tweedie, October 2004.
111 01										ablad werd deur Dingo Tweedie, oktober 2004, geschreven.
Hull	Length of Waterline	LWL	40.00	feet	=	12.19	2	metres	Versie 1	
	Beam	В	11.08		=			metres		besetel.
	VCG	VCG	4.25		=	1.29	5	metres		
	Displacement	Δ	20,000	lbf	=	9,07	2	kg		
	Deadrise @ Transom	βт	10.00	0						
	Deadrise @ Amidships	β 10(10.00	0						
	Distance to Amidships	L)0(20.000	feet	=	6.09	6 1	metres		
		θ	0.000	0						
	Angle of Thrust Line	8	0.00	0						
		f	0.00	feet	=	0.00	0 1	metres		
	Minimum Speed	Vmin	6.7	kn	=	11.	3 1	feet/s	This is th	ne minimum speed valid for this analysis
	Maximum Speed	V _{max}	145.4	kn	=	245.	5 1	feet/s	This is th	ne maximum speed valid for this analysis
0.04-	Leasth Queell	LOA	40.00	6		40.40	0	metres		
S/Str.	Length Overall Maximum Beam		11.08		=			metres		
		B _{max} Z	11.08		=			metres metres		
	Moulded Depth of Hull		0.00		=	5355				
	Height of House Breadth of House	Hss	Zalitzania					metres		
		B _{SS}	0.00		=			metres		
	Frontal Area of House	Ass	0.00	feet ²	=	0.00	0	m²		
Number	Number of Propellers	N	3							
Trim Tab	Chord	CF	1	feet	2	0.30	5 1	metres		
	Span Ratio	σ	0.333	(<= 1)					
	Deflection Angle	δ	2		1					
Rudder	Chord	Crudder	0.00	feet	1	0.00	0 1	metres		
	Thickness	t	0.00	feet	=	0 00	0	metres		
	Area	Arudder		feet ²	=	0.00				
		X _o				ansom	8.3	20	metres	(+ve fwd)
	Centrepoint	y _o					=		metres	(+ve up)
		()-		10 M / C / C / C / C / C / C / C / C / C /						x 17
Shaft	Diameter of Shaft	Φ_{shaft}	0.00	feet		0.00	0 1	metres		
	Length of Shaft & Hub	1	0.00	feet	=	0.00	0 1	metres		
	Contractint	∫ x₀	0.00	feet fro	m tr	ansom	=	0.000	metres	(+ve fwd)
	Centrepoint	1 Vo	0.00	faat fra	m h	aseline	Ξ	0.000	metres	(+ve up)

<u>OUTPUT</u>		V	LCG	T	1160)	1	P
	Centrepoint	[y₀	0.00 feet from b	aseline =	0.000	metres	(+ve up)	
	0 1	x _o	0.00 feet from tr	ansom =	0.000	metres	(+ve fwd)	
	Area	Astrut	0.00 feet ² =	0.000	m ²		****	
	Thickness	t	0.00 feet =	0.000	metres			
Strut	Chord	Cstrut	0.00 feet =	0.000	metres			


	V LCG		τ D			T		Peffe	Peffective		h		Ccr	Comments	λ	
	[kn]	[ft]	[metres]	[°]	[lbf]	[kN]	[lbf]	[kN]	[ehp]	[ekW]	[ft]	[metres]	Lew.[°]	Angeli [°]		
22	35	29	8.839	0.83	6,221	27.7	6,221	27.7	668	499	1.19	0.363	3.23	2.12	Note: not planing	5.6885
Go	36	29	8.839	0.83	6,480	28.8	6,480	28.8	716	534	1.18	0.360	3.08	2.04	Note: not planing	5.6207
00	38	29	8.839	0.83	7,021	31.2	7,022	31.2	819	611	1.16	0.354	2.83	1.90	Note: not planing	5.5018
	40	29	8.839	0.82	7,596	33.8	7,597	33.8	932	696	1.14	0.347	2.60	1.77	Note: not planing	5.4039
	42	29	8.839	0.81	8,207	36.5	8,208	36.5	1,058	789	1.11	0.338	2.41	1.66	Note: not planing	5.3265
	44	29	8.839	0.79	8,858	39.4	8,859	39.4	1,196	893	1.09	0.332	2.24	1.56	Note: not planing	5.2683
	46	29	8.839	0.77	9,552	42.5	9,553	42.5	1,348	1,006	1.06	0.323	2.09	1.47	Note: not planing	5.2276
	48	29	8.839	0.75	10,291	45.8	10,292	45.8	1,516	1,131	1.03	0.314	1.95	1.39	Note: not planing	5.2031
	50	29	8.839	0.73	11,079	49.3	11,080	49.3	1,700	1,269	1.01	0.308	1.83	1.32	Note: not planing	5.1933
	52	29	8.839	0.70	11,919	53.0	11,920	53.0	1,902	1,420	0.98	0.299	1.72	1.25	Note: not planing	5.1969
	54	29	8.839	0.67	12,815	57.0	12,816	57.0	2,124	1,585	0.96	0.293	1.62	1.19	Note: not planing	5.2135
	56	29	8.839	0.65	13,769	61.3	13,769	61.3	2,366	1,766	0.93	0.283	1.53	1.14	Note: not planing	5.2417
	58	29	8.839	0.62	14,788	65.8	14,789	65.8	2,632	1,964	0.91	0.277	1.45	1.09	Note: not planing	5.2826
	60	29	8.839	0.59	15,875	70.6	15,876	70.6	2,923	2,182	0.89	0.271	1.38	1.04	Note: not planing	5.3343
	62	29	8.839	0.57	17,038	75.8	17,038	75.8	3,242	2,419	0.87	0.265	1.31	1.00	Note: not planing	5.3983

Simulink Model

Department of Mechanical Engineering